DIE BEDEUTUNG VON IL-6

IL-6 ist ein multifunktionelles Zytokin, das die Funktionen einer Vielzahl an Zellen und physiologischen Prozesse beeinflussen kann.1-4

Für eine Homöostase als Antwort auf entzündliche Prozesse sind normale Konzentration an Zytokinen und anderen Signalmolekülen erforderlich.1,5 Viele Zytokine, einschließlich Tumornekrosefaktor-α (TNF-α), die Interleukine (IL) 1, 4, 6, 12, 13, 17, und 21, sowie Interferone (IFNs), spielen eine zentrale Rolle bei Entzündungskrankheiten.1,6

IL-6 stellt einen kritischen Knotenpunkt dar. Bei Autoimmunerkrankungen und chronischer Entzündung können erhöhte IL-6-Konzentrationen die Homöostase zahlreicher physiologischer Prozesse stören und zu einer chronischen Entzündung und dem Fortschreiten der Krankheit beitragen.1-4,7-12

Die Rolle von IL-6 bei der Homöostase und der Immunantwort

Immunzellen verwenden Zytokine und deren Rezeptoren als Werkzeuge zur Kommunikation und Aufrechterhaltung der Homöostase oder zur Regulierung der Entzündung bei einer Infektion oder bei einem Trauma.13

Normale IL-6-Konzentrationen sind für eine Homöostase bei entzündlichen Prozessen essentiell. Als Reaktion auf eine Infektion oder Verletzung fördert und koordiniert die IL-6-Signaltransduktion die proinflammatorischen Aktivitäten der Zellen im ganzen Körper.1,5,7

  • An den Infektionsstellen wird IL-6 von den infiltrierenden Zellen des angeborenen und des adaptiven Immunsystems sowie den benachbarten Endothelzellen freigesetzt und stimuliert all diese verschiedenen Zelltypen, ihre jeweiligen Immunfunktionen auszuüben.14-17
  • Durch seine Wirkung auf die Leber kann IL-6 eine systemische Entzündung fördern, wodurch die Produktion von an der proinflammatorischen Kaskade beteiligten Akute-Phase-Reaktanten in der Leber erhöht wird.1,18
  • Durch Überwindung der Blut-Hirn-Schranke kann IL-6 Fieber vermitteln und die Synthese von Prostaglandin E2 (PGE2) im Hypothalamus initiieren, wodurch die Körpertemperatur geregelt wird.19-21

Unter normalen Umständen werden die Konzentrationen des zirkulierenden IL-6 niedrig gehalten. In verschiedenen Studien wurde nachgewiesen, dass die Serumkonzentrationen des zirkulierenden IL-6 bei gesunden Probanden zwischen ca. 1 pg/ml und ca. 16 pg/ml liegen.22-26

Da IL-6 jedoch einer der zentralen Koordinatoren der Immunantwort ist, ist die IL-6-Konzentration als Reaktion auf Infektion und Trauma stark erhöht. Dies fördert eine vermehrtes Überleben und eine erhöhte Proliferation der Immunzellen, eine verstärkte Produktion von B-Zell-Antikörpern sowie eine Verschiebung der metabolischen Funktion durch Veränderung der Lipid- und Glucoseverwertung. Nach Abklingen der Infektion oder des Traumas sinkt die Konzentration des zirkulierenden IL-6 wieder auf die Basiswerte ab.5,7,8,27-30

Aufgrund von schwerwiegenden Infektionen können die IL-6-Serum-Konzentrationen bis zu 10.000 pg/ml mit signifikanten, wenn auch weniger dramatischen Steigerungen, bei anderen Entzündungs- und Infektionskrankheiten erreichen.25,31,32

  • Bei Patienten mit rheumatoider Arthritis (RA) wurde über verschiedene IL-6-Serumkonzentrationen im Bereich zwischen 5 pg/ml und 200 pg/ml berichtet, wobei in der Synovialflüssigkeit 100 bis 1.000 Mal höhere Konzentrationen nachzuweisen sind.23,24,33-35
  • In der Tat ist IL-6 eines der Zytokine, die am reichlichsten im Serum und der Synovialflüssigkeit der entzündeten Gelenke von RA-Patienten vorkommen, und ist mit der Aktivität der Krankheit und der Zerstörung der Gelenke assoziiert.1

Dauerhaft erhöhte IL-6-Konzentrationen können eine Rolle bei der Störung der Homöostase in vielen physiologischen Prozessen spielen.

Anhaltend erhöhte IL-6-Serumkonzentrationen können weitreichende Folgen haben. Neben der entzündlichen Wirkung kann sich eine gesteigerte IL-6-Signaltransduktion auch auf den Metabolismus (Lipid, Glucose), die Hämatopoese, das zentrale Nervensystem und die Immunabwehr auswirken.5,7-9

Erhöhte IL-6-Konzentrationen bei RA sind mit Krankheitsaktivität, Gelenkzerstörung und systemischen Manifestationen assoziiert und können zu Müdigkeit, Anämie, Osteoporose und Herz-Kreislauf-Erkrankungen beitragen.1,2,41

Learn more about how IL-6 signaling works

Referenzen: 1. Dayer JM, Choy E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford). 2010;49(1):15-24. 2. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51(suppl 5):v3-v11. 3. Liang KP, Myasoedova E, Crowson CS, et al. Increased prevalence of diastolic dysfunction in rheumatoid arthritis. Ann Rheum Dis. 2010;69(9):1665-1670. 4. Rho YH, Chung CP, Oeser A, et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2009;61(11)1580-1585. 5. McInnes IB. Cytokines. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR, eds. Kelley’s Textbook of Rheumatology. Vol 1. 9th ed. Philadelphia, PA: Elsevier/Saunders; 2013:369-381. 6. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429-442. 7. Saxena A, Cronstein BN. Acute phase reactants and the concept of inflammation. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR, eds. Kelley’s Textbook of Rheumatology. Vol 1. 9th ed. Philadelphia, PA: Elsevier/Saunders; 2013:818-829. 8. Tutuncu Z, Kavanaugh A. Anticytokine therapies. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR, eds. Kelley’s Textbook of Rheumatology. Vol 1. 9th ed. Philadelphia, PA: Elsevier/Saunders; 2013:957-977. 9. Tanaka T, Kishimoto T. Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases. Int J Biol Sci. 2012;8(9):1227-1236. 10. Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins—regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kB-dependent signaling. Eur J Cell Biol. 2012;91(6-7):496-505. 11. Alesci S, Martinez PE, Kelkar S, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005;90(5):2522-2530. 12. Raison CL, Borisov AS, Majer M, et al. Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Pyschiatry. 2009;65(4):296-303. 13. Frank SA. Input-output relations in biological systems: measurement, information and the Hill equation. Biol Direct. 2013;8(31):1-25. 14. Jirik FR, Podor TJ, Hirano T, et al. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol. 1989;142(1):144-147. 15. Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1(6):510-514. 16. Hurst SM, Wilkinson TS, McLoughlin RM, et al. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001;14(6):705-714. 17. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235-238. 18. Castell JV, Gómez-Lechón MJ, David M, Fabra R, Trullenque R, Heinrich PC. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology. 1990;12(5):1179-1186. 19. Sundgren-Andersson AK, Ostlund P, Bartfai T. IL-6 is essential in TNF-alpha-induced fever. Am J Physiol. 1998;275(6 pt 2):R2028-R2034. 20. Dinarello CA, Cannon JG, Mancilla J, Bishai I, Lees T, Coceani F. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells. Brain Res. 1991;562(2):199-206. 21. Mastorakos G, Chrousos GP, Weber JS. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab. 1993;77(6):1690-1694. 22. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6-33. 23. Desgeorges A, Gabay C, Silacci P, et al. Concentrations and origins of soluble interleukin 6 receptor-alpha in serum and synovial fluid. J Rheumatol. 1997;24(8):1510-1516. 24. Sack U, Kinne RW, Marx T, Heppt P, Bender S, Emmrich F. Interleukin-6 in synovial fluid is closely associated with chronic synovitis in rheumatoid arthritis. Rheumatol Int. 1993;13(2):45-51. 25. Pujhari SK, Prabhakar S, Ratho R, et al. Th1 immune response takeover among patients with severe Japanese encephalitis infection. J Neuroimmunol. 2013;263(1-2):133-138. 26. Motivala SJ, Sarfatti A, Olmos L, Irwin MR. Inflammatory markers and sleep disturbance in major depression. Psychosom Med. 2005;67(2):187-194. 27. Jansen JH, Kluin-Nelemans JC, Van Damme J, Wientjens GJ, Willemze R, Fibbe WE. Interleukin 6 is a permissive factor for monocytic colony formation by human hematopoietic progenitor cells. J Exp Med. 1992;175(4):1151-1154. 28. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669-684. 29. Damas P, Ledoux D, Nys M, et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg. 1992;215(4):356-362. 30. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med. 1993;119(8):771-778. 31. Friedland JS, Suputtamongkol Y, Remick DG, et al. Prolonged elevation of interleukin-8 and interleukin-6 concentrations in plasma and of leukocyte interleukin-8 mRNA levels during septicemic and localized Pseudomonas pseudomallei infection. Infect Immun. 1992;60(6):2402-2408. 32. Wang SM, Liao YT, Hu YS, et al. Immunophenotype expressions and cytokine profiles of influenza A H1N1 virus infection in pediatric patients in 2009. Dis Markers. 2014;2014:195453. 33. Usón J, Balsa A, Pascual-Salcedo D, et al. Soluble interleukin 6 (IL-6) receptor and IL-6 levels in serum and synovial fluid of patients with different arthropathies. J Rheumatol. 1997;24(11):2069-2075. 34. Hein GE, Köhler M, Oelzner P, Stein G, Franke S. The advanced glycation end product pentosidine correlates to IL-6 and other relevant inflammatory markers in rheumatoid arthritis. Rheumatol Int. 2005;26(2):137-141. 35. Sacerdote P, Carrabba M, Galante A, Pisati R, Manfredi B, Panerai AE. Plasma and synovial fluid interleukin-1, interleukin-6 and substance P concentrations in rheumatoid arthritis patients: effect of the nonsteroidal anti inflammatory drugs indomethacin, diclofenac and naproxen. Inflamm Res. 1995;44(11):486-490. 36. Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH, eds. Rheumatology. 5th ed. Philadelphia, PA: MOSBY Elsevier Ltd; 2011. 37. Janeway CJ, Travers P, Walport M, Shlomchik M. Immunobiology: The Immune System in Health and Disease. 5th ed. New York: Garland Science; 2001. 38. Ito A, Itoh Y, Sasaguri Y, Morimatsu M, Mori Y. Effects of interleukin-6 on the metabolism of connective tissue components in rheumatoid synovial fibroblasts. Arthritis Rheum. 1992;35(10):1197-1201. 39. Okada A, Yamasaki S, Koga T, et al. Adipogenesis of the mesenchymal stromal cells and bone oedema in rheumatoid arthritis. Clin Exp Rheumatol. 2012;30(3):332-337. 40. Schmitt RM, Bruyns E, Snodgrass HR. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 1991;5(5):728-740. 41. Crofford LJ, Kalogeras KT, Mastorakos G, et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J Clin Endocrinol Metab. 1997;82(4):1279-1283.